久久婷婷香蕉热狠狠综合,精品无码国产自产拍在线观看蜜,寡妇房东在做爰3,中文字幕日本人妻久久久免费,国产成人精品三上悠亚久久

當前位置:首頁 > 嵌入式培訓 > 嵌入式學習 > 入門指導 > 嵌入式如何轉人工智能

嵌入式如何轉人工智能 時間:2019-10-23      來源:濟南中心,馬老師

前段時間有學生問到,嵌入式如何轉人工智能?下面我就統一給大家解釋 一下。

眼下,人工智能已經成為越來越火的一個方向。普通程序員,如何轉向人工智能方向,

   AI,也就是人工智能,并不僅僅包括機器學習。曾經,符號與邏輯被認為是人工智能實現的關鍵,而如今則是基于統計的機器學習占據了主導地位。最近火熱的深度學習正是機器學習中的一個子項。目前可以說,學習AI主要的是學習機器學習。

   但是,人工智能并不等同于機器學習,這點在進入這個領域時一定要認識清楚。在學習過程中,你會面對大量復雜的公式,在實際項目中會面對數據的缺乏,以及艱辛的調參等。如果僅僅是因為覺得這個方向未來會“火”的話,那么這些困難會容易讓人放棄。考慮到普通程序員的特點,而要學習如此困難的學科,是否就是沒有門路的?答案是否定的。只要制定合適的學習方法即可。

學習方法:

   學習方法的設定簡單說就是回答以下幾個問題:我要學的是什么?我怎樣學習?我如何去學習?這三個問題概括說就是:學習目標,學習方針與學習計劃。學習目標比較清楚,就是踏入AI領域這個門。這個目標不大,因此實現起來也較為容易。“過大的目標時就是為了你日后放棄它時找到了足夠的理由”。

   學習方針可以總結為 “興趣為先,踐學結合”。簡單說就是先培養興趣,然后學習中把實踐穿插進來,螺旋式提高。這種方式學習效果好,而且不容易讓人放棄。有了學習方針以后,就可以制定學習計劃,也稱為學習路線。下面就是學習路線的介紹。

  我推薦的學習路線是這樣的,如下圖:

  

圖1 AI領域學習路線圖

   這個學習路線是這樣設計的:首先了解這個領域,建立起全面的視野,培養起充足的興趣,然后開始學習機器學習的基礎,這里選擇一門由淺入深的課程來學習,課程最好有足夠的實驗能夠進行實戰。基礎打下后,對機器學習已經有了充足的了解,可以用機器學習來解決一個實際的問題。

   這時還是可以把機器學習方法當作一個黑盒子來處理的。實戰經驗積累以后,可以考慮繼續進行學習。這時候有兩個選擇,深度學習或者繼續機器學習。深度學習是目前最火熱的機器學習方向,其中一些方法已經跟傳統的機器學習不太一樣,因此可以單獨學習。除了深度學習以外,機器學習還包括統計學習,集成學習等實用方法。

   如果條件足夠,可以同時學習兩者,一些規律對兩者是共通的。學習完后,你已經具備了較強的知識儲備,可以進入較難的實戰。這時候有兩個選擇,工業界的可以選擇看開源項目,以改代碼為目的來讀代碼;學術界的可以看特定領域的論文,為解決問題而想發論文。

   無論哪者,都需要知識過硬,以及較強的編碼能力,因此很能考察和鍛煉水平。經過這個階段以后,可以說是踏入AI領域的門了。“師傅領進門,修行在個人”。之后的路就要自己走了。

下面是關于階段的具體介紹:

領域了解:

   在學習任何一門知識之前,首先第一步就是了解這個知識是什么?它能做什么事?它的價值在什么地方?如果不理解這些的話,那么學習本身就是一個沒有方向的舟,不知道駛向何處,也極易有沉船的風險。了解這些問題后,你才能培養出興趣,興趣是最好的引路人,學習的動力與持久力才能讓你應付接下來的若干個階段。關于機器學習是什么,能做什么,它與深度學習以及人工智能的關系,可以看我寫的博客 從機器學習談起:

知識準備

   如果你離校過久,或者覺得基礎不牢,最好事先做一下準備復習工作。“工欲善其事,必先利其器”。以下的準備工作不多,但足以應付后面階段的學習。

   數學:復習以下基本知識。線性代數:矩陣乘法;高數:求導;概率論:條件與后驗概率。其他的一些知識可以在后面的學習的過程中按需再補;

  英文:常備一個在線英文詞典,例如愛詞霸,能夠不吃力的看一些英文的資料網頁;

   FQ:可以隨時隨地上Google,這是一個很重要的工具。不是說百度查的不能看,而是很多情況下Google搜出來的資料比百度搜的幾十頁的資料還管用,尤其是在查英文關鍵字時。節省時間可是很重要的學習效率提升;

實踐做項目

   學習完了基礎課程,你對機器學習就有了初步了解。現在使用它們是沒有問題的,你可以把機器學習算法當作黑盒子,放進去數據,就會有結果。在實戰中你更需要去關心如何獲取數據,以及怎么調參等。如果有時間,自己動手做一個簡單的實踐項目是最好的。

 這里需要選擇一個應用方向,是圖像(計算機視覺),音頻(語音識別),還是文本(自然語言處理)。這里推薦選擇圖像領域,這里面的開源項目較多,入門也較簡單,可以使用OpenCV做開發,里面已經實現好了神經網絡,SVM等機器學習算法。項目做好后,可以開源到到 Github 上面,然后不斷完善它。實戰項目做完后,你可以繼續進一步深入學習,這時候有兩個選擇,深度學習和繼續機器學習;

總結

   本文的目的是幫助對AI領域了解不深,但又想進入的同學踏入這個門。這里只說踏入,是因為這個領域的專精實在非常困難,需要數年的積累與努力。在進行領域學習前,充分認識自己的特點,制定合適的學習方法是十分重要的。

   首先得對這個領域進行充分了解,培養興趣。在學習時,保持著循序漸進的學習方針,不要猛進的學習過難資源;結合著學習與實踐相輔的策略,不要只讀只看,實際動手才有成就感。

上一篇:嵌入式和人工智能的關系

下一篇:Linux中的關機命令淺析

熱點文章推薦
華清學員就業榜單
高薪學員經驗分享
熱點新聞推薦
前臺專線:010-82525158 企業培訓洽談專線:010-82525379 院校合作洽談專線:010-82525379 Copyright © 2004-2022 北京華清遠見科技集團有限公司 版權所有 ,,京公海網安備11010802025203號

回到頂部